Qualitative research: The impact of root orientation on coarse roots detection using ground-penetrating radar (GPR)

Author:

Wang Mingkai1,Wen Jian1,Li Wenbin1

Affiliation:

1. Beijing Forestry University

Abstract

The growth of coarse roots is complex, leading to intricate patterns of root systems in three dimensions. To detect and recognize coarse roots, ground-penetrating radar (GPR) was used. According to the GPR theory, a clear profile hyperbola is formed on the GPR radargrams when electromagnetic waves travel across two surfaces with different dielectric constants. First, the forward models (different root orientations) were built with simulation software (GprMax3.0) based on the finite-different time-domain method (FDTD). As the radar moved forward, the signal reflection curve was generated in different root orientations. An algorithm was proposed to obtain the coordinates of a single coarse root and analyze the influence of root direction on the hyperbola of coarse root through a symmetry curve and relative error (RE). Based on GPR datasets from the simulation experiment, the controlled experiment evaluated feasibility and effectiveness of the simulation experiment. To demonstrate the effect of the root orientation, the algorithm was applied to in situ recognition of the Summer Palace. The results showed that the localization of root orientation was relatively accurate. However, the proposed algorithm was unable to implement automatic detection, and the results still required human intervention. This research provides a solid basis for the biomass measurement, diameter estimation, and especially the three-dimensional reconstruction of ancient and famous trees.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3