The existence of cellulose and lignin chemical connections in ginkgo traced by 2H-13C dual isotopes

Author:

Xie Yimin1,Liu Yanchao1,Jiang Chen1,Wu Hongfei1,Bi Shuying1

Affiliation:

1. Hubei University of Technology

Abstract

To elucidate the covalent association between the celluloses and lignins found in gymnosperms, they were labeled with stable isotopes (deuterium and carbon-13) at specific positions and traced via mass spectroscopy and nuclear magnetic resonance (NMR). Both the 2H-labeled cellulose precursor (UDP-glucose-[6-2H2]) and the 13C-labeled lignin precursor (coniferin-[α-13C]) were added to a growing ginkgo plant, in combination with a 4-coumarate-CoA ligase inhibitor. The detection of abundance of 13C and 2H revealed that the lignin precursor and cellulose precursor deposited more actively in 300 to 1300 μm and 100 to 900 μm distance from cambium, respectively. The lignin-carbohydrate complexes (LCCs) were isolated from the newly-formed ginkgo shoot xylem and further degraded with cellulase and hemicellulase to obtain enzymatically degraded lignin-carbohydrate complexes (EDLCCs). Analysis of the solid-state cross polarization / magic angle spinning (CP/MAS) 13C-NMR of the newly-formed xylem, liquid-state 13C-NMR, and 1H-NMR of the EDLCCs confirmed that the major connection between celluloses and lignins was a benzyl ether bond (between cellulose C6 and lignin Cα). A minor ester bond was also found between the hydroxyl group (at the 6-position of cellulose) and ferulic acid (at the γ position in lignins).

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3