Affiliation:
1. Isparta University of Applied Sciences
Abstract
Wood is a complex, natural structure and an essential source of nutrition, construction and building materials, energy, etc. Because of its microscopic structure, it is difficult to model its composition. In this study, the bio-mimicry of annual rings of the wood was evaluated by modeling and printing four different models with different ring diameters. The CATIA v5 software was used for 3D modeling. The designed models were additively manufactured using a 3D printer via the fused deposition of the acrylonitrile butadiene styrene (ABS) filament. The infill density and type, shell, layer height, and printing speed were evaluated for their influence on the structure of the ring. According to the results of preliminary biomimetic experimental, none of the models were exactly printed using the FDM method and ABS filament. Furthermore, the printing parameters did not significantly improve ring structure formation. Only the earlywood section of Model 4 could be moderately printed. Therefore, using these tools with printing parameters and materials was not found to be suitable for bio-mimicry of tree rings even if the size of the rings was multiplied by ten. In future work, the same models will be printed using different methods and tools to evaluate the printing ability or differences.
Subject
Waste Management and Disposal,Bioengineering,Environmental Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献