Tool wear during high-speed milling of wood-plastic composites

Author:

Wei Weihua1,Li Yingli1,Xue Tongming1,Li Yuantong1,Sun Peng1,Yang Bin1,Yin Zhen2,Mei Changtong1

Affiliation:

1. Nanjing Forestry University

2. Suzhou University of Science and Technology

Abstract

A high-speed milling test was performed with a self-developed wood-plastic composite using uncoated and coated carbide cutting tools. The nose width was used to represent the tool wear. An advanced tool measurement system was adopted to measure the wear of each tool. The influence of some cutting parameters, including spindle speed, feed rate, axial cutting depth, and radial cutting depth, on the tool wear was analyzed using a single factor test method. Scanning electron microscopy was used to observe the wear morphology on the rake and clearance face of the tool before and after the tool was worn. The results showed that the tool nose width increased with increased axial cutting depths or spindle speeds, while the radial depth under the condition of the same cutting length decreased with an increase in the feed rate. Moreover, the main form of tool wear was abrasive wear and coating peel-off when the wood-plastic composites were machined with high-speed milling.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3