Micro image classification of 19 high-value hardwood species based on texture feature fusion

Author:

Yang Xiaoxia1,Jiang Hailan1,Ma Lixin1,Yang Wenhu1,Zhao Xiaohan1,Hu Cuiping2,Ge Zhedong3

Affiliation:

1. School of New Generation Information Technology Industry

2. Linshu County Garden Sanitation Guarantee Service Center

3. Shandong Jianzhu University

Abstract

For classification of wood species with similar microstructure, 19 high-value hardwood species of Papilionaceae, Ebenaceae, and Caesalpiniaceae were used as experimental objects. Images of transverse sections, radial sections, and tangential sections were collected by Micro CT. Local binary patterns (LBP) are often used for feature extraction. LBP deformed forms such as uniform LBP, rotation-invariant LBP, and rotation-invariant uniform LBP were fused with Gray-Level Co-Occurrence Matrix (GLCM) to form three fusion features. The fusion features were combined with support vector machine (SVM) or BP neural network to realize wood classification. The texture feature fusion method was found to be better than the single feature classification. Among them, the effect of uniform LBP and GLCM fusion was the best, and the classification accuracy combined with SVM was the highest. The evaluation of the classification of 19 kinds of hardwood mainly depended on transverse sections, and its accuracy was higher than that of the radial and tangential sections. Therefore, the classification results of transverse sections should be taken as the main evaluation basis for the classification of the 19 high-value hardwood species.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3