Affiliation:
1. An-Najah National University
2. University of Prishtina; NanoAlb-Unit of Albanian Nanoscience and Nanotechnology
3. Sidi Mohammed Ben Abdallah University
4. Mohamed 1St University
Abstract
A cellulose polymer functionalized with an amine chelating agent was designed and synthesized in a three-step process that involved oxidizing cellulose powder into dialdehyde cellulose, reacting cellulose dialdehyde with phenyl biguanide to create an imine linkage between the two reactants, and reducing the imine linkage to an amine. The cellulose amine polymer was cross-linked with glycerol digycidyl ether and evaluated as an adsorbent of toxic metal ions from wastewater. The adsorption efficiency of the cross-linked cellulose amine polymer toward Pb(II) and Cu(II) was evaluated as a function of the adsorbent dose, pH, time, temperature, and initial ion concentration. The cross-linked cellulose amine polymer showed an excellent efficiency toward over 15 metal ions present in a real sample of sewage. Thermodynamic analysis showed a spontaneous adsorption of metal ions on the polymer at room temperature. Monte Carlo and Molecular Dynamic simulations showed that the Cu(II) and Pb(II) ions adsorbed onto the cellulose amine polymer surface in a considerable amount, which agreed with the experimental and thermodynamic data. The negative free energy value confirmed the spontaneity of the adsorption process. As such, cross-linked cellulose amine polymers could be a promising alternative to current commercial adsorbents.
Subject
Waste Management and Disposal,Bioengineering,Environmental Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献