Affiliation:
1. Material Science and Engineering College, Northeast Forestry University; Heilongjiang Bayi Agricultural University
2. College of Life Science and Technology, Heilongjiang Bayi Agricultural University
3. Material Science and Engineering College, Northeast Forestry University
Abstract
The environmental performance was assessed for a wardrobe made from hybrid modified ammonium lignosulfonate/wood fiber composites (HWC). The HWC wardrobe system involved four subsystems, namely the raw materials supply, energy consumption, wardrobe manufacturing, and transportation. A comparative life cycle assessment of a wardrobe built from conventional medium-density fiberboard with three primary damage categories was also performed. The results suggested that the HWC composites were a more sustainable material compared with conventional boards. The raw materials supply and energy consumption influenced the three primary damage categories. Climate change on human health, particulate matter formation, fossil depletion, and human toxicity had a dominant contribution to the overall environmental impact. Also, a sensitivity analysis was performed with a focus on using wood waste as a raw material and on the different conditions for the modification of lignosulfonate for manufacturing HWC. The results indicated that the use of wood waste and an appropriate amount of unmodified lignosulfonate as a binder aids in efficient HWC production for wardrobes. These results can help to improve HWC wardrobe technology and in choosing the appropriate wardrobe system.
Subject
Waste Management and Disposal,Bioengineering,Environmental Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献