Prediction of straight tooth milling of Scots pine wood by shank cutter based on neural net computations and regression analysis

Author:

Gu Jiali1,Cao Pingxiang1

Affiliation:

1. Nanjing Forestry University

Abstract

Regression models and a neural net approach were used to predict the cutting performance during milling of Scots pine (Pinus sylvestris L.) by shank cutter. The influence of rake angle, spindle speed, and milling depth on surface roughness of the workpiece, as well as the connection between the milling force and the surface roughness, were thoroughly considered. Four approaches were used to predict the workpiece’s surface roughness based on the experimental data: Back Propagation Neural Network (BPNN), Radial Basis Function Neural Network (RBFNN), Support Vector Machines (SVM), and multiple linear regression. The comparative analysis of the predictive models showed that Neural Network (NN) had preferable performance for prediction of machined surface roughness, with an R2 of 0.98. The SVM had certain fluctuations and the R2 of the multiple linear regression was just 0.87, indicating that they did not fit well for prediction machined surface roughness. In summary, the effective trend of milling parameters on the machined surface roughness of Scots pine was similar to multiple nonlinear regression, and the accurate prediction by BPNN model can provide technical support for the surface roughness of the Scots Pine and enhance shank cutter performance.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3