Determination of the suitable shape for tensile tests parallel to the fibers in Guadua angustifolia Kunth specimens

Author:

Acosta Ricardo1,Montoya Jorge A.1,Welling Johannes2

Affiliation:

1. Technological University of Pereira

2. Thuenen Institute

Abstract

The tension test parallel-to-fiber in anisotropic materials, such as bamboo, is one of the most important tests because it makes it possible to evaluate mechanical properties used in calculations for different types of stresses. For this type of test there are standards that apply to wood in general, others to bamboo, and other more specific ones that apply to bamboo Guadua angustifolia Kunth. These rules suggest the use of dog bone test specimens. When performing such tests parallel to the fiber direction, failures are observed in undesired zones. This document characterizes and analyzes the possible types of failures. It also evidences the difficulties presented and quantifies them finding that, for 59 failed test pieces, only 18.6% had failures within the desired zones, while the other 81.4% had failures within undesired zones in the tension test parallel to the fiber. Finally, it can be concluded that there are gaps in the rules that influence the variation of the results obtained by different authors. The dog bone test specimens are not recommended for tension tests parallel to the Guadua fiber. Rather, utilization of straight specimens is recommended with a calculated clamping height and the standard equation and protected clamping area.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3