Optimization of extraction process of pine needle essential oil by response surface methodology and its chemical composition analysis

Author:

Xie Junkang1,Yang Zhangqi1,Feng Yuanheng1,Chen Hu1,Hu La1,Jia Jie1,Wu Dongshan1

Affiliation:

1. Guangxi Forestry Research Institute

Abstract

The extraction of essential oil from pine needles was optimized by response surface methodology, and the following optimal conditions were obtained: a fresh pine needle of 100 g, an extraction time of 2 h, a water dosage of 850 mL, and a NaCl concentration of 2.50%. The extraction yield of essential oil was 0.611% under optimal conditions, which was extremely close to the predicted value. The extraction yields of essential oil from needles of 12 common pines in Guangxi were compared. The contents of essential oil in needles of Pinus massoniana, Pinus crassicorticea, and Pinus taeda were relatively higher than other pines. A total of 44 chemical components were identified by GC-MS, including 12 monoterpenes, 14 sesquiterpenes, and 12 alcohols. The chemical components of essential oil from different pines have their own features, and it is speculated that they have good and diversified application potential in the fields of medicine, food, spices, and so on. The chemical compositions of essential oil with high extraction yield have similar characteristics. This phenomenon can be used as the basis and means for the selection of pines with high content of essential oil in needles.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3