Affiliation:
1. Kyungpook National University
2. HP Printing Korea
Abstract
Herein, the challenge of accurately classifying the manufacturing origin of printing paper, including continent, country, and specific product, was addressed. One-dimensional convolutional neural network (1D CNN) models trained on infrared (IR) spectrum data acquired from printing paper samples were used for the task. The preprocessing of the IR spectra through a second-derivative transformation and the restriction of the spectral range to 1800 to 1200 cm-1 improved the classification performance of the model. The outcomes were highly promising. Models trained on second-derivative IR spectra in the 1800 to 1200-cm-1 range exhibited perfect classification for the manufacturing continent and country, with an impressive F1 score of 0.980 for product classification. Notably, the developed 1D CNN model outperformed traditional machine learning classifiers, such as support vector machines and feed-forward neural networks. In addition, the application of data point attribution enhanced the transparency of the decision-making process of the model, offering insights into the spectral patterns that affect classification. This study makes a considerable contribution to printing paper classification, with potential implications for accurate origin identification in various fields.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献