Response surface optimisation of enzymatically hydrolysed and dilute acid pretreated oil palm trunk bagasse for succinic acid production

Author:

Bukhari Nurul Adela1,Md Jahim Jamaliah1,Loh Soh Kheang2,Bakar Nasrin Abu2,Luthfi Abdullah Amru Indera1

Affiliation:

1. Universiti Kebangsaan Malaysia

2. Energy and Environment Unit, Engineering & Processing Research Division

Abstract

The exploitation of agroindustrial lignocellulose, such as oil palm trunk bagasse (OPTB), as a raw material in the production of succinic acid (SA) may serve as an effective strategy to propel the bio-based industry. This study aimed to optimise the recovery of fermentable sugar, i.e., glucose, from enzymatic hydrolysis of the dilute acid pretreated OPTB (DA-OPTB). The dilute acid pretreatment used in this study was able to remove 59.5% of hemicellulose and 13.3% of lignin. Response surface methodology (RSM) based on central composite design (CCD) was then applied to investigate four independent variables – enzyme loading (10 to 50 U/g), agitation speed (50 to 250 rpm), reaction time (0 to 96 h), and surfactant concentration (0.025 to 0.125%, v/v). The experimental glucose concentration of 21.7 g/L was in good agreement with the RSM-predicted value of 20.5 g/L. Among the parameters investigated, supplementation of a surfactant during enzymatic hydrolysis was significant in influencing glucose recovery, while the extent of the agitation speed was the least influential. The maximum recovered glucose was estimated at 217 g per kg of raw OPTB, with 7.3 g/L of SA attainable from the fermented DA-OPTB hydrolysate using Actinobacillus succinogenes 130Z. The results demonstrated that OPTB can be practically utilised in the economical production of high value-added SA.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3