Preparation and characterization of spherical lignocellulose-based anion exchanger from sugarcane bagasse

Author:

Cao Wei1,Li Hao1,Hong Yixia1,Yang Ziyi1,Fu Minglai1

Affiliation:

1. Huaqiao University

Abstract

Biosorption is considered a promising technique for removing heavy metals from water. However, a biosorbent is usually prepared in the form of biomass powder that has drawbacks in stability and uniformity. Herein, a spherical lignocellulose-based anion exchanger (LCB-AE) was prepared from sugarcane bagasse through the method of dissolution-regeneration of biomass followed by quaternary ammonium modification. Dissolution-regeneration conditions of raw biomass were optimized, and the prepared materials were characterized by element composition analysis, pore-structure analysis (mercury intrusion porosimetry), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and carbon-13 nuclear magnetic resonance (13C-NMR) analyses. The LCB-AE has a macro-porous structure and a rough surface occupied mainly by quaternary ammonium and hydroxyl groups. Adsorption selectivity of LCB-AE follows the order of CrO42- > PO43- > SO42- > NO3-, and adsorption isotherms agree well with the Langmuir model, which suggests the experimental exchange abilities are approximately 0.8 to 0.9 mEq/g. These results show that LCB-AE as a new spherical biosorbent has the potential to be used for anions removal from water.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3