Classification option for Korean traditional paper based on type of raw materials, using near-infrared spectroscopy and multivariate statistical methods

Author:

Jang Kyung Ju1,Heo Tae Young2,Jeong Seon Hwa1

Affiliation:

1. National Research Institute of Cultural Heritage

2. Chungbuk National University

Abstract

Depending on the different types of raw materials used to produce hanji, a Korean traditional handmade paper, there can be significant differences in the durability and mechanical properties of the final product. In this study, near-infrared spectroscopy (NIR) combined with multivariate statistical methods were used to confirm the classification possibility of hanji based on the various type of raw materials. The hanji papers were prepared from paper mulberry trees, cooking agents, and mucilage. Altogether, a total of 60 hanji spectra were collected by NIR. Then, the 60 spectra were grouped into four categories: the control, paper mulberry, cooking agent, and mucilage type based on each of the types of raw materials contained in the hanji. Three different classification algorithms – partial least squares discriminant analysis (PLS-DA), support vector machines (SVM), and random forest (RF) – were used to classify the hanji types. The best hanji material classification performance was obtained when the hanji samples were classified according to paper mulberry type, wherein the prediction accuracies of PLS-DA, SVM, and RF were 100%, 100%, and 98%, respectively. These results suggested that NIR in combination with multivariate statistical methods can be used for hanji material classification.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3