Sound absorption performance of light-frame timber construction wall based on Helmholtz resonator

Author:

Zhou Yuhao1,Chen Si1,Fu Haiyan2,Mohrmann Sarah1,Wang Zheng1

Affiliation:

1. Nanjing Forestry University

2. Tongji University

Abstract

In order to improve the sound absorption performance of the light-frame timber construction wall, this paper combined the aperture embedded wall unit structure with the actual building wall structure based on the Helmholtz resonance structure principle to design and fabricate two sets of wall structures: a new aperture embedded Helmholtz resonance structure (experimental group) and a conventional structure (control group). The sound absorption coefficients of the two wall structures were measured by the reverberation chamber test, and related analysis was carried out. The results showed that the aperture embedded Helmholtz resonance wall structure exhibited good sound absorption performance in the low frequency range; in particular, a perfect sound absorption effect was basically achieved at a frequency of 100 Hz. Compared with the conventional wall structure, the sound absorption performance of the aperture embedded Helmholtz resonance wall structure in the test frequency range was enhanced greatly. While the value of the sound absorption coefficient was increased in the low frequency range, the bandwidth of sound absorption frequency was expanded to a certain extent, and the average sound absorption coefficient and noise reduction coefficient were both improved. This paper explored the applicability of Helmholtz resonance structure in practical wall structure. The research results could provide reference for reducing indoor noise pollution and creating a better living environment.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3