Combustion and flue gas evolution characteristics of rice husk in various mixtures and layers with Al2O3 particles and char prepared with different pyrolysis parameters

Author:

Dong Lu1,Wang Liang2,Huan Xuanzhou3,Liu Bichen4,Yi Baojun4,Hu Hongyun5,Huang Fang1

Affiliation:

1. Jianghan University

2. China Power Hua Chuang (Suzhou) Electricity Technology Research Company Ltd.

3. Xi’an Thermal Power Research Institute Co., Ltd.

4. College of Engineering, Huazhong Agricultural University

5. Huazhong University of Science and Technology

Abstract

During pyrolysis and combustion experiments, rice husk and Al2O3 were combined in two ways, namely blending (rice husk was blended with Al2O3) and covering (rice husk was covered by Al2O3) modes, respectively. Rice husk biomass (RHB) char was prepared under different pyrolysis conditions. The resulting combustion characteristics and corresponding gaseous evolution of the biochar were compared. The maximum combustion rate decreased as particles accumulated, causing a shift in the thermo-gravimetric curve to higher temperature ranges. The combustion reaction was hindered in the covering mode. The combustion reactivity of the prepared char decreased as the char preparation time increased. During the char oxidation process, the release amounts of H2O and CO2 from char combustion increased first and then decreased, while the release amounts of CO, CH4, and organic components containing C=O gradually decreased with increasing char preparation time. Char prepared with the covering mode exhibited higher burn-out rates and combustion indices but lower activation energies required for combustion reaction. Additionally, the covering mode delayed the timely release of gases from the biomass heating in air, and the quantity of combustion gas released from the char produced at covering mode was greater than that released from the char produced at blending mode. The results obtained can improve the understanding of stacked biomass particles combustion process.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3