Using furniture factory waste sawdust in wood-plastic composite production and prototype sample production

Author:

Kılıç İbrahim1,Avcı Büşra2,Atar İlkay2,Korkmaz Nesrin1,Yılmaz Güngör1,Mengeloğlu Fatih2

Affiliation:

1. Yozgat Bozok University

2. Kahramanmaras Sutcu Imam University

Abstract

This study investigated the possibility of furniture factory waste sawdust (FFWS) utilization in polypropylene (PP) composites and producing furniture support leg prototypes. Test samples were manufactured using a single screw extruder and injection molding machine utilizing 10, 15, 20, 25, 30, and 35% by weight of FFWS and 0% or 3% maleated polypropylene (MAPP). Selected mechanical and physical properties of manufactured samples were determined. The presence of FFWS and MAPP significantly improved mechanical properties compared to neat PP. The higher FFWS amount increased the flexural strength, flexural modulus, tensile modulus, impact resistance, and density. Tensile strength and elongation at break decreased with filler amount, but the addition of MAPP caused a dramatic increase in tensile strength. In addition, flexural strength, flexural modulus, tensile strength, elasticity modulus, and density values of the composites containing MAPP had higher values than the ones without MAPP. However, impact resistance and elongation at break values were slightly decreased with the addition of MAPP. Optimization results showed that formulation mixtures containing 20% filler and 3% MAPP fit best for prototype furniture legs manufacturing.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3