Combined effect of zinc borate and coupling agent against brown and white rot fungi in wood-plastic composites

Author:

Altuntas Ertugrul1,Yılmaz Esra1,Salan Tufan1,Alma Mehmet Hakkı1

Affiliation:

1. Kahramanmaras Sutcu Imam University

Abstract

Fungal resistance was investigated for wood-plastic composites (WPCs) containing zinc borate, maleic anhydride grafted polyethylene (MAPE) as a coupling agent, wood fiber (Pinus sylvestris), and high-density polyethylene (HDPE). Decay resistance, water absorption, and surface hardness (Shore D) of the WPCs were tested. The reinforced wood-plastic composites were exposed to brown-rot fungus (Coniophora puteana, Postia placenta) and white-rot fungus (Trametes versicolor) in agar tests. The results showed that zinc borate improved the decay resistance of the WPCs against brown and white rot fungus according to their weight losses. Moreover, the water absorption and surface hardness tests indicated that the physical properties of the composites were weakened after fungal decay tests. The usage of MAPE and zinc borate alone or together was effective against both rot fungus species in WPCs. The synergy of 1% zinc borate and 3% MAPE in WPCs could considerably increase the fungal attack resistance. Scanning electron microscopy (SEM) revealed that both brown and white rot fungus attacked the surface of WPCs samples without both MAPE and zinc borate.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3