Bio-polyethylene furanoate (Bio-PEF) from lignocellulosic biomass adapted to the circular bioeconomy

Author:

Mendieta Carolina Mónica1,González Giselle1,Vallejos María Evangelina1,Area María Cristina1

Affiliation:

1. Programa de Celulosa y Papel (PROCYP)

Abstract

There is a global trend to replace the production of conventional recyclable plastics with biobased ones, allowing a sustainable alternative adapted to the current concept of a circular bioeconomy. Forest-industrial and agricultural biomass wastes (lignocellulosic biomass waste, LCBW) produce severe problems in some developing countries because they are improperly disposed of or burned in the open air. Such wastes are attractive as a raw material to produce bioplastics due to their low cost. Furthermore, low-pollution processes can complete an economical and environmentally friendly approach. This review focuses on bio-polyethylene furanoate (PEF) production from LCBW as an alternative for polyethylene terephthalate (PET), one of the most widely used fossil-based plastic. The standpoint is based on the replacement of fossil-based monomers for the manufacture of PET, terephthalic acid (TPA), and ethylene glycol by two bio-based monomers, namely 2,5-furandicarboxylic acid (FDCA) and bio-ethylene glycol (Bio-MEG). This study describes the processes to obtain each bio-monomer, as well as the resulting polymers’ performance aspects, biodegradability, environmental and economic considerations, and recycling.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3