Production and evaluation of particleboards made of coconut fibers, pine, and eucalyptus using bicomponent polyurethane-castor oil resin

Author:

Bispo Rodrigo Andraus1,Trevisan Mariana Ferreira1,da Silva Sérgio Augusto Mello1,Aquino Vinícius Borges de Moura2,Saraiva Raísse Layane de Paula2,Arroyo Felipe Nascimento3,Molina Julio Cesar1,Chahud Eduardo4,Branco Luiz Antonio Melgaço Nunes4,Panzera Túlio Hallak5,Lahr Francisco Antonio Rocco6,Christoforo André Luis2

Affiliation:

1. São Paulo State University

2. Federal University of Southern and Southeastern Pará

3. Federal University of São Carlos

4. Federal University of Minas Gerais

5. Federal University of São João del-Rei

6. University of São Paulo

Abstract

This research examined the influence of the compositions between coconut fiber (Cocos nucifera) and wood particles (Pinus taeda L. and Eucalyptus saligna) on physico-mechanical properties of homogeneous particleboards. The exploratory study was carried out under Tukey’s contrast test of means, at 5% significance level, with the following compositions: 100% coconut fiber (F100 P0 E0); 50% coconut fiber, 25% pine particles, and 25% eucalyptus particles (F50 P25 E25); and 50% of pine particles and 50% of eucalyptus particles (F0 P50 E50), with particle moisture content between 0% to 2% and 10%, in mass, of polyurethane-castor oil (PU-Castor) resin. Three panels were produced for each composition. The physico-mechanical properties such as density, moisture content, swelling in thickness after 24 h of immersion in water, perpendicular tensile strength, static bending strength, and modulus of elasticity were evaluated using standard methods. The results obtained indicated the potential for using coconut fiber for the production of homogeneous particleboards in view of the minimum criteria required by the normative documents, with emphasis on the physical property of swelling after 24 hours, which obtained a statistically equivalent average relative to the treatment that contained only wood particles.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3