Bioconversion of cassava stem to ethanol using Aspergillus fumigatus and Saccharomyces cerevisiae

Author:

Yu Bo1,Jin Luqiao1,Xia Huiling1,Lu Yu1,Dong Mengyi1

Affiliation:

1. Nanchang University

Abstract

Cassava stem was bioconverted to ethanol using microorganisms. First, cassava stem was pretreated by in ways, alkaline solution alone (ASA), microwave treatment combined with alkaline solution (MTCAS), and ultrasonic treatment combined with alkaline solution (UTCAS). The compositions of cassava stem pretreated by different methods were analyzed, and the results showed that the cassava stem pretreated by MTCAS was more suitable for saccharification and subsequent ethanol production. The pretreated cassava stem was subjected to simultaneous saccharification and ethanol production using Aspergillus fumigatus and Saccharomyces cerevisiae. Response surface methodology was used to optimize various process parameters including fermentation temperature, initial pH, fermentation time, rotational speed and substrate concentration. A bioconversion yield of 70 mg/g was obtained at the optimum conditions of fermentation, viz, temperature 35 °C, initial pH 5.6, fermentation time 132 h, rotational speed 155 rpm, and substrate concentration 4.6 wt%. An experiment under optimum conditions confirmed the model predictions. The results suggest that pretreatment with MTCAS and simultaneous fermentation with A. fumigatus and S. cerevisiae would be a good choice for the bioconversion of lignocellulosic biomass to bioethanol. Considering the cost advantage, using microbial fermentation instead of pure enzyme hydrolysis is more advantageous in 2nd generation bioethanol production.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3