Kinetic study of torrefied woody biomass via TGA using a single heating rate and the model-fitting method

Author:

Lee Chang-Goo1,Kim Min-Ji1,Eom Chang-Deuk1

Affiliation:

1. National Institute of Forest Science

Abstract

A model-fitting method at a single heating rate (10 °C·min-1) was used to investigate the thermal kinetic characteristics of torrefied woody biomass. The kinetic parameters were examined for pine, oak, and bamboo samples with the order of the reaction set ranging from 0.1 to 0.5 and 1.0. Based on the thermogravimetric, derivative thermogravimetric, and derivative2 thermogravimetric curves obtained, the ranges at which substantial hemicellulose and cellulose pyrolysis occurs were set as the analysis range, and the kinetic parameters of each species were analyzed. The activation energy and pre-exponential factor were obtained at these analytical ranges using two differential methods (Friedman and Chatterjee-Conard) and an integral method (Coats-Redfern). Although there were numerical differences between the results of the differential and integral methods, the thermal properties of each sample exhibited a consistent trend. Softwood was found to have the highest reactivity and intermolecular collisions per unit weight during thermal decomposition. In the case of the torrefied oak and torrefied bamboo, considering that the carbon content and fixed carbon content were approximately 24% to 25% higher than the softwood, it is appropriate to consider the thermal characteristics of each species for producing a solid fuel based on the application.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3