Affiliation:
1. Patna University
2. Bihar Agricultural University
Abstract
To investigate the production of cellulases and hemicellulases from Aspergillus niger MTCC9931, solid state fermentation (SSF) was performed using 10 different lignocellulosic materials derived from agrowastes, i.e., rice straw, rice husk, wheat straw, corn cob, sugar cane bagasse, saw dust, banana stalk, Eichhornia, Parthenium stalk, and residual fruit pulp. Among these agrowastes, the maximum yield of reducing sugars (116.46 ± 2.56 g/mL) was observed with residual fruit pulp. Further, the same substrate showed the highest endoglucanase (389.1 ± 0.44 IU/g), MCC-adsorbable endoglucanase (3.4 ± 0.14 IU/g), cellulase (12.0 ± 0.13 IU/g), and FPase (4.9 ± 0.64 IU/g) activities. Sawdust showed the maximum xylanase activity (7478.0 ± 6.51 IU/g), and corncob showed maximum β-glucosidase activity (79.87 ± 1.15 IU/g). The maximum activities of all enzymes were observed at 72 h of SSF under shaking conditions. A. niger MTCC9931 can be concluded to be an important strain for potential applications in saccharification. The enzymatic hydrolysates of the agrowastes were used as substrates for ethanol production by Saccharomyces cerevisiae MTCC174. The maximum yield (35.34 g/L) of ethanol was obtained when residual fruit pulp was used as a substrate. This study has further demonstrated the feasible biotechnological conversion of agrowastes to produce ethanol using both A. niger and S. cerevisiae.
Subject
Waste Management and Disposal,Bioengineering,Environmental Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献