Analytical method with iteration technique (AMIT) and finite element method (FEM) for predicting the flexural performance of glulam wood/PVC composite hollow member

Author:

Aunyingcharoen Phatthana1,Pulngern Tawich1,Rosarpitak Vichai2,Sombatsompop Narongrit1

Affiliation:

1. King Mongkut’s University of Technology Thonburi (KMUTT)

2. V.P. Wood Co., Ltd., 72/1 Moo. 4, Suksawat 41, Banphueng, Phra Pradaeng, Samut Prakan, 10130, Thailand

Abstract

The flexural performance of a glulam wood/PVC composite (GWPVC) hollow member, which was assembled from four elements with WPVC composite hollow sections to create a double I-section, was studied using two methods: the analytical method with iteration technique (AMIT) and the finite element method (FEM). Experiments verified the predictions from AMIT and simulations from FEM to determine the most suitable method for the parametric studies. This investigation explored the variations in slenderness ratio and the flange and web thickness to enhance and study their impact on flexural performance. In parametric studies, equal cross-sectional areas were used to facilitate comparisons and maintain production costs. The importance of bond strength at the contact surfaces in assembling a GWPVC hollow member led to bonding tests and confirmed sufficient strength at contact surfaces. In four-point bending tests, the GWPVC hollow member exhibited a brittle mode with flexural tensile failure without delamination. The initial MOE, MOR, and maximum deflection values were 5,140 MPa, 29.8 MPa, and 47.8 mm, respectively. The parametric study employs AMIT to investigate flexural performance and reveals that varying the slenderness ratio affected the initial stiffness, maximum deflection, and ultimate load. Flexural performance can be improved by making minor adjustments.

Publisher

BioResources

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3