Experimental investigation of epoxy matrix and pine sawdust reinforced wood-polymer composite materials

Author:

Koyuncu Menderes1

Affiliation:

1. Yuzuncu Yill University

Abstract

Mechanical, thermal, and water absorption properties of the composites have been studied as a function of sawdust content, using different weight percentage. The characteristics properties of the composites were studied using differential scanning calorimetry and Fourier-transform infrared spectroscopy. Field emission scanning electron microscopy was used to understand the interfacial bonding. The obtained results showed that the 15 wt% composites exhibited the highest tensile strength (7.5 MPa) and flexural strength (8.9 MPa) compared with the 5 wt%, 30 wt%, 40 wt%, and 50 wt% composites. A good interfacial combination was formed between 15 wt% of sawdust and epoxy resin. In terms of the tensile and flexural strength, the differential scanning calorimetry analysis confirmed that matrix modification could improve the mechanical properties and thermal stability of the composites compared to neat resin. The Fourier-transform infrared spectroscopy spectrum showed the presence of functional groups pertaining to composites. The absorption data of the composite showed that the water uptake increased as the amount of sawdust in the composite increased. The 5 wt%, 15 wt%, 30 wt%, and 40 wt% sawdust composites also displayed less water absorption behavior (1.534%, 1.871%, 2.492%, and 4.127%, respectively) compared to the 50 wt% composite.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3