Interaction of the electrical conductivity of recycled pulp colloidal suspension with chitosan and bentonite as a papermaking additive system

Author:

Taheri Ali Askar1,Rahmaninia Mehdi1,Khosravani Amir1

Affiliation:

1. Tarbiat Modares University

Abstract

The performance of chitosan biopolymer-bentonite microparticle system in recycled pulp colloidal suspension of old corrugated containers with different electrical conductivities was considered. Various instrumental analyses (atomic force microscopy, field emission scanning electron microscopy, dynamic light scattering, and Fourier-transform infrared spectroscopy) were applied to characterize the applied chemicals. The results indicated that the mentioned system could increase the process and mechanical properties in comparison to the control sample. Although increasing the electrical conductivity of the recycled pulp decreased the performance of chitosan-bentonite system to some extent, the system was successful in its mission even at the highest electrical conductivity, i.e., increasing the retention, drainage, tensile index, tear index, bending strength and internal bonding strength, with improvement of approximately 41%, 32%, 8%, 16%, 26%, and 57% in comparison with the control samples, respectively. Therefore, this method can be a fascinating approach to the papermaking process. Moreover, the probable reasons of the mentioned achievements were considered and discussed.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3