Abstract
Enzymatic hydrolysis of non-dried and dried cellulose samples having various particles size, degree of polymerization, porosity, crystalline polymorph, and content of non-crystalline domains has been studied. Regression analysis was carried out to determine contribution of various structural features of cellulose samples to their hydrolysability. It was found that particle size, degree of polymerization, and crystalline polymorph had a negligible influence on the conversion degree of cellulose into glucose under the effect of the cellulolytic enzyme. Such characteristics as the pores volume had a fair impact on the conversion degree of cellulose. Drying of the wet samples caused decreasing of the hydrolysability of cellulose due to irreversible collapse of the pores volume. The content of non-crystalline domains (Ax) in cellulose had the highest effect on the rate of enzymatic hydrolysis and average conversion degree (αa) of cellulose into glucose. A linear dependence αa = f(Ax) was established both for dried and non-dried cellulose samples.
Subject
Waste Management and Disposal,Bioengineering,Environmental Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献