Abstract
Flax shive constitutes about 70% of the flax stem and has limited use. Because shive is a lignocellulosic by-product, it can potentially be pyrolyzed and activated to produce an activated carbon. The objective of this study was to create an activated carbon from flax shive by chemical activation in order to achieve significant binding of selected divalent cations (cadmium, calcium, copper, magnesium, nickel, zinc). Shive carbons activated by exposure to phosphoric acid and com-pressed air showed greater binding of cadmium, copper, nickel or zinc than a sulfuric acid-activated flax shive carbon reported in the literature and a commercial, wood-based carbon. Uptake of calcium from a drinking water sample by the shive carbon was similar to commercial drinking water filters that contained cation exchange resins. Magnesium removal by the shive carbon was greater than a commercial drinking water filtration carbon but less than for filters containing cation exchange resins. The results indicate that chemically activated flax shive carbon shows considerable promise as a component in industrial and residential water filtration systems for removal of divalent cations.
Subject
Waste Management and Disposal,Bioengineering,Environmental Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献