Abstract
Low-temperature plasma treatment technology is an efficient and environmentally friendly surface treatment technology that has been extensively studied for the surface chemical modification to pulp fibers. In this study, Eucalyptus alkaline peroxide mechanical pulp (APMP) fibers were modified using a low-temperature plasma generator. The tensile index of the fibers after low-temperature plasma treatment under different conditions was measured and analyzed to evaluate the relationship between the plasma treatment conditions and the physical strength improvement of APMP. It was revealed that factors such as gas source (oxygen, argon, and nitrogen gases), discharge power, vacuum level, and modification time affected the physical strength properties of APMP. In addition, the change in carboxyl group content in the pulp fibers after low-temperature plasma treatment was measured using the Headspace Gas Chromatography (HS-GC) method. The carboxyl content in the fiber increased remarkedly after low-temperature plasma treatment, which was beneficial for improving the physical strength properties of paper made from the APMP.
Subject
Waste Management and Disposal,Bioengineering,Environmental Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献