Bi-directional prediction of wood fiber production using the combination of improved particle swarm optimization and support vector machine

Author:

Gao Yunbo1,Hua Jun1,Chen Guangwei2,Cai Liping3,Jia Na1,Zhu Liangkuan1

Affiliation:

1. College of Electromechanical Engineering, Northeast Forestry University, Harbin, 150040, China

2. College of Electromechanical Engineering, Northeast Forestry University, Harbin, 150040, China;

3. echanical and Energy Engineering Department, University of North Texas, Denton, TX 76201, USA; c: Nanjing Forestry University, Nanjing, 210037, China

Abstract

In order to investigate the relationship between production parameters and evaluation indexes for wood fiber production, a bi-directional prediction model was established to predict the fiber quality, energy consumption, and production parameters based on the improved particle swarm optimization and support vector machine (IPSO-SVM). SVM was applied to build the bi-directional prediction model, and IPSO was used to optimize the SVM parameters that affect the performance of prediction greatly. In the case of the forward prediction, the model can predict the fiber quality and energy consumption using the production parameters as input information; in the case of the backward prediction, the model can estimate production parameters using the fiber quality and energy consumption as evaluation indexes for input information. The results showed that the IPSO-SVM model had high accuracy and good generalization ability in the prediction for the wood fiber production. Additionally, based on the effectiveness of the proposed model and preset evaluation indexes, the corresponding production parameters were determined, which was able to save the wooden resources as well as reduce energy consumption in the fiberboard production.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3