Interaction mechanism between cellobiose and imidazolium halide-based ionic liquids

Author:

Yang Ling1,Peng Hong1,He Hongwei1,Liu Ling1,Fu Guiming1,Liu Yuhuan1,Wan Yin1

Affiliation:

1. Nanchang University

Abstract

Ionic liquids (ILs) are excellent solvents for cellulose, but the dissolution mechanism is not deeply understood. In the present study, cellobiose was used as a model of cellulose, and the imidazolium halide-based ILs with the same cation of 1-butyl-3-methylimidazolium (Bmim+) including BmimCl, BmimBr, and BmimI were used as solvents. The interaction mechanism between the ILs and cellobiose was analyzed by carbon-13 nuclear magnetic resonance (13C NMR). The results showed that the strength of hydrogen bonds formed between the hydroxyl groups of cellobiose and the ILs was greatly affected by the position of hydroxyl groups and the electro-negativity and size of the anions. Compared with the secondary alcoholic hydroxyl groups, the primary alcoholic hydroxyl groups (C6–OH and C12–OH) on the glucopyranose rings of cellobiose more easily formed hydrogen bonds with the ILs. The strength of hydrogen bonds formed between the protons on the imidazolium cation and cellobiose varied with the positions of the protons. The formation of hydrogen bonds between the halogen anions and cellobiose was the main reason for the dissolution of cellobiose in the ILs. The ability of the three ILs to form hydrogen bonds with cellobiose followed the order: BmimCl > BmimBr > BmimI.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3