Low-velocity impact performance of glass fiber, kenaf fiber, and hybrid glass/kenaf fiber reinforced epoxy composite laminates

Author:

Majid Dayang Laila1,Jamal Qistina Mohd1,Manan Nor Hafizah1

Affiliation:

1. UPM

Abstract

The goal to decrease global dependency on petroleum-based materials has created a demand for bio-based composites. Composites that are reinforced with natural fibers often display reduced strength compared with those using synthetic reinforcement, and hybridizing both types of reinforcement within a common matrix system offers a possibly useful compromise. This research investigated the low-velocity impact performance of glass, kenaf, and hybrid glass/kenaf reinforced epoxy composite plates. The aim of the study was to determine the low-velocity impact behavior of biocomposite material in assessing its potential for application in the radome structures of aircraft. Natural fibers possess low dielectric constants, which is a primary requirement for radome. However, the structural integrity of the material to impact damage is also a concern. Composite samples were prepared via a vacuum infusion method. A drop weight impact test was performed at energy levels of 3 J, 6 J, and 9 J. The Impact tests showed that the impact peak force and displacement increased with the energy level. Hybrid glass/kenaf composites displayed damage modes of circular and biaxial cracking. The former is analogous to the damage observed in glass-reinforced composite, while the latter is unique to woven kenaf reinforced composites. The severity of the damage increased with impact energy and was found to be significant at 3 J.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3