Fused deposition 3D printing of bonsai tree guiding mold based on acrylonitrile-butadiene-styrene copolymer

Author:

Wang Chen1,Li Jingyao1,Wang Tianyi1,Chu Qing1,Wang Xiaowen1

Affiliation:

1. Nanjing Forestry University

Abstract

Bonsai is a kind of classical art in China and Japan. The traditional method of bonsai shaping of miniature trees is technical and usually requires experienced horticulturists to successfully carry out the process. In order to let ordinary people feel the fun of bonsai shaping, this paper proposes a fast bonsai shaping method, i.e., by use of a plastic guiding mold with customized shape, which is processed by fused deposition 3D printing technology. The tree seedling is bundled onto the mold, and the shape of the mold guides the growth of the tree seedling, thus achieving the purpose of bonsai shaping. In order to further improve the bending properties of the bonsai guiding mold, this paper investigated the main 3D printing parameters of ABS filament. The results showed that with the decrease of printing speed, the increase of extrusion temperature, and the increase of hot bed temperature, the bending strength and elastic modulus of ABS specimens increased, and the bending properties was enhanced; the optimal printing speed was 50 mm/s, the extrusion temperature was 230 °C, and the hot bed temperature was 80 °C. The mechanical properties of the bonsai guiding mold manufactured based on the optimal process parameters were better, the print quality was higher, and it had high practical value.

Publisher

BioResources

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3