Affiliation:
1. Nanjing Forestry University
Abstract
In the milling of wood-plastic composites, the cutting temperature has a great influence on tool life and cutting quality. The effects of cutting parameters on the cutting temperatures in the cutting zone were analyzed using infrared temperature measurement technology. The results indicated that the cutting temperature increased with the increase of spindle speed and cutting depth but decreased with the increase of feed rates. In addition, based on experimental data, a BP neural network model was proposed for predicting the cutting temperatures. The value of R2 was 0.97354 for the testing data, which indicates that the developed model achieved high prediction accuracy, respectively. The results of the study can play a guiding role in the prediction and control of cutting temperature, which is of great importance in the improvement of tool life, machining quality, and machining efficiency.
Subject
Waste Management and Disposal,Bioengineering,Environmental Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献