Modeling current and future role of agricultural waste in the production of bioethanol for gasoline vehicles

Author:

Badamchi­­zadeh Shahram1,Latibari Ahmad Jahan1,Tajdini Ajang1,Pourmousa Shademan1,Lashgari Amir1

Affiliation:

1. Islamic Azad University

Abstract

This study addressed the urgent need for biofuels even in countries such as Iran, which has fairly good fossil fuel resources. The problems, necessities of the present, and future demand for biofuels are discussed. As the transportation sector is one of the largest sources of air pollution, this study has focused on this sector. This issue was examined from a global perspective, and then within the context of domestic bioethanol production using agricultural residues and proposing different scenarios. The first step in implementing this policy is the accurate forecast of the demand for second-generation bioethanol in the coming years. A nonlinear auto regressive neural network was applied to predict gasoline demand based on Mackey-Glass chaotic time series. Gasoline demand is forecasted by 2030, based on projected volumes of gasoline in different bioethanol mixture scenarios. Results revealed that using scenarios E10, E15, E25, the volume of bioethanol needed by 2030 will amount to 10.12, 15.16 and 25.31 million L per day which can be produced using agricultural products wastes.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3