Optimization of wood-plastic composites by response surface method

Author:

Ji Feng1

Affiliation:

1. Physical Education Department, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China

Abstract

To improve the material properties of wood-plastic composite, poplar fiber and polyethylene powder were used as the main components, a hot-press experiment was conducted using response surface methodology, and the relationship between processing parameters (wood/plastic ratio, hot-press pressure, and time) and experimental result (internal bond strength and thickness swelling) were explored. According to the experimental results, the increasing wood/plastic ratio led to the lower internal bond strength and higher thickness swelling. However, with the increase of both hot-press pressure and time, internal bond strength increased first and then decreased, and thickness swelling decreased first and then increased. Meanwhile, two mathematical models were developed with high feasibility, and the significance of the influence of each term in the models was also analyzed. The models were able to predict and optimize internal bond strength and thickness swelling. Finally, optimal processing parameters were determined as wood/plastic ratio of 1.09, hot-press pressure of 198.38 MPa, and hot-press time of 8.31 s, with respect to the higher internal bond strength and the lower thickness swelling. This work hopes to provide scientific support for the industrial processing of wood-plastic composite.

Publisher

BioResources

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3