Affiliation:
1. Northeast Forestry University
Abstract
The impact of alkaline copper quat (ACQ) and zinc borate (ZB) on the moisture adsorption and desorption properties and leaching resistance of corn stalk fiber (CSF) reinforced high-density polyethylene (HDPE) composites was investigated. The equilibrium moisture content (EMC) was fitted by the Nelson model, and the interaction between the CSF component and the preservatives was characterized by Fourier transform infrared spectroscopy (FTIR). The effective components of the preservative were successfully immobilized on the CSF, which was observed by FTIR analysis. The leaching resistant analysis showed that the leaching amount of copper and boron elements reached a plateau, and that the leaching resistant performance in the ACQ treatment was better than in ZB. The moisture adsorption of CSF/HDPE composites was significantly reduced with ACQ treatment at low CSF content, but clearly increased in ZB treatment at high CSF content. The moisture adsorption and desorption EMC increased with the increased preservative (ACQ or ZB) embedding at a given CSF/HDPE component ratio. The experimental values were fitted well with the Nelson model; thereby this model could be used to predict the moisture adsorption and desorption EMC of CSF/HDPE composites at various relative humidity.
Subject
Waste Management and Disposal,Bioengineering,Environmental Engineering