Ethanolysis of glucose into biofuel 5-ethoxymethyl-furfural catalyzed by NH4H2PO4 modified USY zeolite

Author:

Chen Yihang1,Liang Xuanyu1,Aliya Kutumova1,Zheng Zhangbin1,He Chao1,Jiao Youzhou1,Tao Hongge1,Chang Chun2,Xu Guizhuan1

Affiliation:

1. Henan Agricultural University

2. Zhengzhou University

Abstract

5-Ethoxymethylfurfural (EMF) can be considered as a potential biofuel because of its excellent combustion properties, such as high energy density and low carbon smoke emissions. In this study, Ultra-stable Y (USY) zeolite was modified with NH4H2PO4 and then used as an efficient solid catalyst for the catalytic synthesis of EMF via ethanolysis of glucose First, the NH4H2PO4-modified USY was characterized by FT-IR, XRD, BET, and NH3-TPD. The effect of reaction temperature, reaction time, substrate concentration, and catalyst loading on the yield of EMF was investigated. The P0.2-USY optimal EMF yield was 39.6 mol%, which increased by 20.7% compared to USY, and still had better activity after being reused for 5 cycles. Moreover, the pseudo-homogeneous first-order kinetics model was developed to elucidate the kinetics of EMF formation from glucose, and the kinetics results showed that the activation energy of EMF formation (64.2 kJ⋅mol-1) was lower than that of humins formation (73.2 kJ⋅mol-1). Finally, the ethanolysis pathway was proposed based on the product distribution.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3