Characterization of poly-hydroxybutyrate/luffa fibers composite material

Author:

Avecilla-Ramírez Andrea Melina1,López-Cuellar Ma. del Rocío2,Vergara-Porras Berenice3,Rodríguez-Hernández Adriana I.2,Vázquez-Núñez Edgar1

Affiliation:

1. Universidad de Guanajuato

2. Universidad Autónoma del Estado de Hidalgo

3. Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey

Abstract

Luffa fibers were evaluated as a reinforcement material in poly-hydroxy-butyrate matrix composites. The treatments consisted of varying the incorporation percentage of mercerized and non-mercerized luffa fibers in a poly-hydroxybutyrate (PHB) matrix (5%, 10%, and 20% w/v). Composites made with PHB and reinforced with luffa fibers (treated and non-treated) were mechanically evaluated (tensile strength, Young’s modulus, and percentage of elongation at break), the surface morphology was described by using scanning electronic microscopy, and the degradability behavior of composites was obtained. According to the results, mechanical properties decreased when the percentage of fibers increased and no significant effects were observed when compared with mercerized fiber composites. Degradability tests demonstrated that the weight loss increased with increased fiber content in composites, independent of the applied pretreatments. Microscopy images exhibited that mercerization improved the fiber incorporation into the polymeric matrix, diminishing the “pull out” effect; the above-mentioned result was supported by using the Fourier-transform infrared spectroscopy technique, observing the reduction of lignin and hemicellulose peaks in mercerized fibers. Based on the composite mechanical performance and degradability behavior, it was concluded that this material could be used in the packaging sector as biodegradable secondary packaging material.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3