Effects of rumen fluid as bioaugmentation additive on fungal diversity dynamics during sweet sorghum ensiling

Author:

Tian Hui1,Shi Ruifeng1,Wei Huiyuan1,Lu Nana1,Sun Wenli1,Ren Haiwei1,Zheng Yi2,Li Jingping3,Wang Xiaoli4

Affiliation:

1. Lanzhou University of Technology/Key Laboratory of Complementary Energy System of Biomass and Solar Energy

2. Kansas State University

3. Lanzhou University of Technology

4. Chinese Academy of Agricultural Sciences

Abstract

Fungi play a critical role in silage and rumen fluid, both of which share similar ecosystems. This study is designed to supplement sweet sorghum ensiling with the rumen fluid from beef heifers and evaluate the effect on fungal diversity dynamics and silage quality by high-throughput sequencing and chemical methods. Simultaneously, this study investigated the correlation between fungal communities and chemical compositions of silages. The results suggested that the addition of rumen fluid significantly affected the richness and diversity of fungi in silage. Alpha diversity of total fungi and the relative abundance of Pichia increased, while Schizophyllum and Penicillium decreased, following the supplementation of rumen fluid during 60 days ensiling. In addition, the silage quality was positively correlated with Pichia, but negatively correlated with Hannaella and Vishniacozyma. The findings reveal that the rumen fluid can improve the ensiling characteristics by effectively reducing the reproduction of adverse fungi. However, further research is required to verify the connection of specific pure fungal isolates with the fermentation performance of silage.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3