Enhancing Through Air Drying process efficiency: Investigating laboratory-to-pilot scale correspondence and impact of process variables on tissue paper manufacturing

Author:

Sjöstrand Björn1,Tremblay Bruno2,Danielsson Mikael3

Affiliation:

1. Pro2BE, the Research Environment for Processes and Products for a Circular Forest-based Bioeconomy, Department of Engineering and Chemical Sciences, Karlstad University, Sweden

2. Concept Manager, TAD Technology, Valmet AB, Sweden

3. Polyniora, Halmstad, Sweden

Abstract

State-of-the-art manufacturing of tissue paper by Through Air Drying provides excellent product performance, although at a high production cost and energy use. In this work, a laboratory scale vacuum suction box was used to mimic the initial dewatering and the Through Air Drying molding, together with a pilot-scale trial. The purpose was to investigate both how the laboratory scale corresponds to pilot scale testing and investigate how fabric design, basis weight, beating, and fibers affect dewatering and sheet caliper. This study reevaluates dewatering mechanisms during molding, challenging the previous hypothesis of pure air displacement dewatering. Results show a parallel mechanism of compression dewatering and air displacement. The influence of rush transfer is examined, impacting the sheets’ visual appearance, thickness, and solids content. Correlations between molding box solids content and headbox freeness emphasize significance of fibers and beating levels. Pilot results confirm the link between former solids and molding box solids. Pilot trials validate the laboratory results, facilitating comprehensive simulation of full-scale manufacturing. This research reveals dewatering mechanisms, highlights operational parameters, and enables effective Through Air Drying process design and refinement.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3