Simulation of cattle stomach processes applied to the fermentation of mixed manure and straw

Author:

Liu Enhai1,Guo Zhanghui1,Shi Yali1,Qi Biao1,Wang Yu2,Jiang Yine1

Affiliation:

1. Changzhou University

2. Guangxi Minzu University

Abstract

The cattle stomach was considered as the basis for simulating a proposed operation. Microenvironmental degradation mechanisms are understood to be key to the efficient utilization of straw and other resources. Through dynamic tracking of the change law of heat generated by microbial degradation of straw in the cattle stomach, this study used an orthogonal test to explore the optimal ratio of feeding feed, the degradation mechanism in the microenvironment, and the characteristics of cattle manure and straw anaerobic fermentation. The results showed that the number of days of fermentation and the ratio of straw and cattle manure had a significant impact on methane gas production, and the mixture ratio was 1:3, at 26 °C; within 20 days, the cumulative gas production was up to 78.9 L. The results also showed that rumen microorganisms, cattle manure, and mixed straw fermentation can be used at different ratios to obtain the change of methane production, and determine the best ratio to achieve the maximum gas production.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3