Affiliation:
1. Department of Paper Science and Engineering, College of Forest and Environmental Sciences, Kangwon National University
Abstract
Lignin, renowned for its abundance of hydroxyl groups, was utilized in three dimensions to fabricate a hydrogel matrix. In this study, the optimal conditions for the preparation of a lignin-crosslinked hydrogel and its potential for dye and antioxidant removal were investigated. The hydrogel was synthesized through a cross-linking reaction, with varying amounts of cross-linking agent (poly(ethylene glycol) diglycidyl ether) added to adjust for the lignin content. Chemical structure analysis of the lignin-crosslinked hydrogel was conducted using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy, confirming successful hydrogel formation. Additionally, thermal analysis revealed an increase in the maximum thermal decomposition temperature with increasing cross-linker content. The lignin cross-linked hydrogel demonstrated a significantly higher swelling ability at pH 7 compared to pH 3. The dye adsorption capacity of the lignin-crosslinked hydrogel, which was evaluated using crystal violet (CV), showed a maximum adsorption capacity of 106 mg∙g-1. The CV adsorption behavior followed Freundlich isotherms and pseudo-first-order kinetics. Moreover, the lignin-crosslinked hydrogel exhibited notable antioxidant activity, which was attributed to the phenolic hydroxyl groups of lignin macromolecules. Therefore, lignin-crosslinked hydrogels prepared using cross-linking agents have promising application potential in various fields.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献