The establishment and numerical calculation of a heat transfer model of a graphene heating energy storage floor

Author:

Yang Chunmei1,Guan Bo1,Zhang Zihao1,Zhang Jiawei1,Xue Bo1,Tian Xinchi1

Affiliation:

1. Northeast Forestry University

Abstract

A new type of graphene electric heating solid wood composite floor and its heat transfer model were designed to enable users to have a higher-quality and safe living experience. A heat transfer mathematical model was developed. The structural entity of the composite graphene heating floor was drawn using Solidworks software. The floor structure was abstracted as a two-dimensional model using MATLAB software to obtain the temperature rise curves and corresponding time of each group. Then, six groups of the best data were selected from the experimental data to simulate the heat storage capacity of graphene floors. The optimal group of the model was verified via experiments. According to the simulation, the comprehensive performance was optimal when the overall thickness of the floor was 18 mm, the thickness of the floor surface was 4 mm, and the thickness of the heat-accumulating layer was 2 mm. The experimental results showed a maximum difference between the measured and calculated data of only 3.2%, which shows the scientific validity, accuracy, and advancement of the model. The composite graphene electric heating energy storage floor designed in this study can be regarded as safe, reliable, environmentally friendly, and healthy.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3