Shear performances of hybrid notch-screw connections for timber-concrete composite structures

Author:

Shi Benkai1,Dai Yongqing1,Tao Haotian2,Yang Huifeng1

Affiliation:

1. Nanjing Tech University

2. Southeast University

Abstract

This paper presents the push-out experimental results of hybrid notch-screw (HNS) connections for timber-concrete composite structures. A total of 7 groups of specimens were designed and tested. The experimental parameters included the loading constraint conditions (i.e., the test specimens were loaded either in local compression or in uniform compression), shapes of notches in the wood, screw number in notch, notch width, and the inclusion of a self-tapping screw reinforcement for timber or not. The experimental results were discussed in terms of failure modes, ultimate strength, slip moduli, and ductility. The yield strengths and ductility factors were determined based on the load-slip curves according to existing standards. The experimental results showed that both the shear timber width and the self-tapping screw reinforcement played important roles in terms of the ultimate strengths, ductility, and deformability. Rectangular notched connections with screw reinforcements displayed timber shear failure coupled with brittle failure. With the trapezoidal notch, the ductility of the connections improved, coupled with a decrease in the slip modulus. The self-tapping screw reinforcement for shear timber could greatly improve the ductility performance of the HNS connections. The slip modulus models for the connection with vertical deep notches were provided, which were in agreement with the experimental results.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3