Carboxymethylated pulp as starting point to prepare hydroxypropylmethyl cellulose with enhanced gel rheological properties in an aqueous medium

Author:

Hamed Othman1,Al-Kerm Rana1,Al-Kerm Rola1,Qrareya Hisham2,Deghles Abdalhadi3,Dagdag Omar4

Affiliation:

1. An-Najah National University

2. Arab American University-Palestine

3. Al-Istiqlal University

4. Sidi Mohammed Ben Abdallah University

Abstract

Hydroxypropyl methylcellulose in an aqueous solution upon heating tends to undergo thermal gelation, where the polymer chains form a network and precipitate from solution. This occurs at a temperature known as thermal gelation point. Polymer precipitation causes a significant drop in the shear viscosity. This could be a disadvantage in a hot environment or in applications were heat is applied. In this work, a hydroxypropylmethyl cellulose (HPMC) was formed that undergoes thermal gelation with no polymer precipitation and with enhanced rheological properties. The target HPMC was prepared from wood pulp with a low content of carboxymethyl groups. The produced hydroxypropyl methylcellulose (CMHPMC) derivative showed unique physical properties that are not achievable with typical hydroxypropyl methylcellulose. The thermal gelation temperature of an aqueous solution of CMHPMC was increased from 55 °C for commercial HPMC to 85 °C for CMHPMC. A substitution level of carboxymethylation that led to an HPMC with a thermal gelation and with no precipitation was determined to be a 0.15 of carboxyl groups per anhydroglucose repeat unit. In addition, the carboxymethylated pulp showed an enhanced reactivity towards etherification reactions.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3