Affiliation:
1. National Taiwan University
2. Taiwan Forestry Research Institute
Abstract
Formosan alder (Alnus formosana) is a fast-growing, adaptable, pioneer native tree species in Taiwan, and it is particularly suitable for reforestation. In this study, steam-exploded Formosan alder biomass was employed to investigate lactic acid production by simultaneous saccharification and fermentation (SSF) in the presence of different heavy metals. Impacts of added heavy metals on saccharification processing were investigated. In the presence of 1410 mg Cr6+/L, negative impacts were observed for SSF. The same level of Cr6+ adversely affected fermentation by Lactobacillus casei and L. acidophilus compared to the blank controls. Positive impacts for SSF by Cd2+ were demonstrated with 108 mg Cd2+/L, and the same conditions favored fermentation by L. casei and L. acidophilus. No impacts for SSF by Pb2+ up to 6830 mg Pb2+/L were found for both Lactobacillus strains. This study demonstrates that SSF for production of lactic acid from Formosan alder biomass was able to tolerate a wide range of heavy metal concentration regimes. Hence, this study provides an alternative use for biomass harvested from phytoremediation sites. Such biomass can be used as sustainable regenerative biomaterial, and thereby it can further enhance the benefits of environmental remediation.
Subject
Waste Management and Disposal,Bioengineering,Environmental Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献