The influence of mechanical surface preparation method, adhesive type, and curing temperature on the bonding of Darwin stringybark

Author:

Leggate William1,McGavin Robert L.2,Outhwaite Andrew2,Dorries Jack2,Robinson Rhianna2,Kumar Chandan2,Faircloth Adam2,Knackstedt Mark1

Affiliation:

1. The Australian National University

2. Queensland Department of Agriculture and Fisheries

Abstract

Darwin stringybark (Eucalyptus tetrodonta) is one of Northern Australia’s most important commercial forest resources. The wood exhibits desirable wood properties including high strength, natural durability, and visual appeal. The production of engineered wood products (EWPs) such as glulam from this resource represents a significant commercial opportunity for the timber industry in northern Australia. However, a major challenge to overcome is the achievement of satisfactory glue bond performance. This study evaluated the effects of different surface machining preparations, adhesive types, and curing temperatures on the bonding characteristics of Darwin stringybark. The pre-gluing surface machining method significantly influenced the timber wettability, roughness, permeability and tensile shear strength of adhesive bonds. Planing resulted in the lowest wettability, roughness, and permeability, while bonded planed samples produced the poorest tensile shear strength. Alternative surface machining methods including face milling and sanding post-planing were shown to significantly improve the timber wettability, roughness, and permeability, and also to increase the tensile shear strength of bonded samples. The resorcinol formaldehyde adhesive resulted in slightly improved tensile shear strength in most cases compared to the polyurethane adhesive. There was no significant improvement in tensile shear strength with the use of elevated temperature curing.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3