Improvement of water resistance and mechanical properties of fast-growing poplar with bio-based isobornyl methacrylate monomer

Author:

Xu Ji1,Zhai Zhaolan2,Yan Xingyan2,Song Zhanqian2,Shang Shibing2,Rao Xiaoping2

Affiliation:

1. Nanjing Forestry University

2. Chinese Academy of Forestry

Abstract

Fast-growing poplar has become an extensively planted fast-growing forest tree species because of its short plantation rotation, lightweight character, and strong adaptability. However, fast-growing poplar usually exhibits some disadvantageous properties, such as inferior mechanical properties, high hygroscopicity, and poor dimensional stability, which limits its applications to a great extent. Herein, a simple method for improving the water resistance and mechanical properties of fast-growing poplar wood using the biobased monomer isobornyl methacrylate (IBOMA) was investigated. Wood/PIBOMA composites were prepared by impregnating the wood matrix with IBOMA ethanol solution, and then the IBOMA in the wood matrix was heated to initiate in situ polymerization. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were used to investigate the properties of fast-growing wood/PIBOMA composites. The results showed that the IBOMA successfully penetrated the wood structure and polymerized in the cell walls and cell lumens. Thereby, the water resistance and mechanical properties of the fast-growing poplar were effectively improved. In addition, the water uptake of the wood decreased from 168.3% to 35.8% after impregnation with the 90% IBOMA solution. The modulus of rupture (MOR), modulus of elasticity (MOE), and compression strength (CS) of the 90% wood/PIBOMA composites were increased by 82.7, 28.6, and 2.3%, respectively.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3