Mechanical, thermal, and barrier properties of PHBH/cellulose biocomposite films prepared by the solution casting method

Author:

Li Junran1,Yin Fen1,Li Dongna1,Ma Xiaojun1,Zhou Jiao1

Affiliation:

1. Tianjin University of Science & Technology

Abstract

A biocomposite film from bacterial polyester, poly(3- hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), and natural cellulose was developed by the solution casting method. The structure, the mechanical, thermal, and barrier properties (oxygen and water vapor), and the biodegradation of the PHBH/cellulose biocomposite films were studied. With an increase in cellulose content, the tensile strength of biocomposite films increased from 28.5 MPa to 45.9 MPa, an improvement of 351% compared with neat PHBH. The PHBH/cellulose biocomposite films exhibited improved thermal stability, with the maximum thermal decomposition temperature increased from 264 °C to 330 °C. More importantly, PHBH/cellulose biocomposite films possessed better barrier properties against oxygen, up to approximately 10 times more than neat PHBH. With cellulose content increased from 50 wt% to 90 wt%, the mass loss of composite films increased gradually and then decreased. This high performance biocomposite has potential to expand the use of cellulose from renewable bioresources and the practical application of PHBH-based biodegradable plastics instead of traditional petrochemical materials in the packaging field.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3